46 research outputs found

    Polymerase Chain Reaction in liposomes

    Get PDF
    Background: Compartmentalization of biochemical reactions within a spherically closed bilayer is an important step in the molecular evolution of cells. Liposomes are the most suitable structures to model this kind of chemistry. We have used the polymerase chain reaction (PCR) to demonstrate that complex biochemical reactions such as DNA replication can be carried out inside these compartments. Results: We describe the first example of DNA amplification by the PCR occurring inside liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), or of a mixture of POPC and phosphatidylserine. We show that these liposomes are stable even under the high temperature conditions used for PCR. Although only a very small fraction of liposomes contains all eight different reagents together, a significant amount of DNA is produced which can be observed by polyacrylamide gel electrophoresis. Conclusions: This work shows that it is possible to carry out complex biochemical reactions within liposomes, which may be germane to the question of the origin of living cells. We have established the parameters and conditions that are critical for carrying out this complex reaction within the liposome compartment

    Matrix Effect In Oleate Micelles-Vesicles Transformation

    Get PDF
    It is accepted by many authors that the formation of closed molecular structures is a key step in the evolution of life. Oleate vesicles represent a good model system in this framework due to the fact that they self-assemble spontaneously and that fatty acids are considered as possible prebiotic structures. In this contribution, we will focus the attention on the transition from oleate micelles to oleic acid/oleate vesicles induced by a pH change. This transformation is strongly influenced by the presence of pre-formed vesicles. We called this phenomenon the matrix effect. The influence of pre-added POPC liposomes (POPC = 1-palmitoyl-2-oleoyl-sn-glycerol–3-phosphocholine) and oleic acid/oleate vesicles on the process rate and on the final size distribution will be discussed elucidating the main differences between these two systems
    corecore